A Perturbation Inequality for the Schatten-$p$ Quasi-Norm and Its Applications to Low-Rank Matrix Recovery

نویسندگان

  • Man-Chung Yue
  • Anthony Man-Cho So
چکیده

In this paper, we establish the following perturbation result concerning the singular values of a matrix: Let A,B ∈ R be given matrices, and let f : R+ → R+ be a concave function satisfying f(0) = 0. Then, we have min{m,n}

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization

The Schatten-p quasi-norm (0<p<1) is usually used to replace the standard nuclear norm in order to approximate the rank function more accurately. However, existing Schattenp quasi-norm minimization algorithms involve singular value decomposition (SVD) or eigenvalue decomposition (EVD) in each iteration, and thus may become very slow and impractical for large-scale problems. In this paper, we fi...

متن کامل

Performance Guarantees for Schatten-$p$ Quasi-Norm Minimization in Recovery of Low-Rank Matrices

We address some theoretical guarantees for Schatten-p quasi-norm minimization (p ∈ (0, 1]) in recovering low-rank matrices from compressed linear measurements. Firstly, using null space properties of the measuring operator, we provide a sufficient condition for exact recovery of low-rank matrices. This condition guarantees unique recovery of matrices of ranks equal or larger than what is guaran...

متن کامل

Stability of low-rank matrix recovery and its connections to Banach space geometry

Abstract. There are well-known relationships between compressed sensing and the geometry of the finite-dimensional lp spaces. A result of Kashin and Temlyakov [20] can be described as a characterization of the stability of the recovery of sparse vectors via l1minimization in terms of the Gelfand widths of certain identity mappings between finitedimensional l1 and l2 spaces, whereas a more recen...

متن کامل

Transformed Schatten-1 Iterative Thresholding Algorithms for Matrix Rank Minimization and Applications

We study a non-convex low-rank promoting penalty function, the transformed Schatten-1 (TS1), and its applications in matrix completion. The TS1 penalty, as a matrix quasi-norm defined on its singular values, interpolates the rank and the nuclear norm through a nonnegative parameter a∈ (0,+∞). We consider the unconstrained TS1 regularized low-rank matrix recovery problem and develop a fixed poin...

متن کامل

A Unified Convex Surrogate for the Schatten-p Norm

The Schatten-p norm (0 < p < 1) has been widely used to replace the nuclear norm for better approximating the rank function. However, existing methods are either 1) not scalable for large scale problems due to relying on singular value decomposition (SVD) in every iteration, or 2) specific to some p values, e.g., 1/2, and 2/3. In this paper, we show that for any p, p1, and p2 > 0 satisfying 1/p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1209.0377  شماره 

صفحات  -

تاریخ انتشار 2012